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Abstract. In the classical limit no work is needed to couple a system to a bath with sufficiently weak
coupling strength (or with arbitrarily finite coupling strength for a linear system) at the same temperature.
In the quantum domain this may be expected to change due to system-bath entanglement. Here we show
analytically that the work needed to couple a single linear oscillator with finite strength to a bath cannot be
less than the work obtainable from the oscillator when it decouples from the bath. Therefore, the quantum
second law holds for an arbitrary temperature. This is a generalization of the previous results for zero
temperature [1,2]; in the high temperature limit we recover the classical behavior.

PACS. 03.65.Ud Entanglement and quantum nonlocality – 05.40.-a Fluctuation phenomena, random
processes, noise, and Brownian motion – 05.70.-a Thermodynamics

1 Introduction

The second law of thermodynamics [3] is considered one
of the central laws of science, engineering, and technol-
ogy. For over a century it has been assumed to be invio-
lable by the scientific community. Over the last 20 years,
however, its absolute status has come under increased
scrutiny [4]. Challenges to the second law have recently
attracted big interest with consideration of the miniatur-
ization of a system under investigation, especially at low
temperatures where quantum effects are important [4,5].
In contrast to common quantum statistical mechanics
which is intrinsically based on a vanishingly small cou-
pling between system and bath (“thermodynamic limit”),
the finite coupling strength between them in the quan-
tum regime causes some subtleties that must be recog-
nized. The quantum thermodynamic behaviors of small
systems have theoretically been investigated intensively
and extensively [1,2,4–9] and experimentally been exam-
ined [4,10,11].

The problem of a quantum linear oscillator coupled to
an independent-oscillator model of a heat bath (quantum
Brownian motion) has been extensively discussed [12–16].
The validity of the quantum second law has recently been
questioned in this scheme at zero temperature [5,17,18] by
the fact that the coupled oscillator has a higher average en-
ergy value than the free harmonic oscillator ground state,
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which would not be in compliance with the second law. By
means of a cyclic coupling/decoupling process one might
expect to extract useful work from a single bath. How-
ever, this claim turned out incorrect; the apparent excess
energy in the coupled oscillator cannot be used to extract
useful work, neither for the well-known Drude damping
model with a cut-off frequency for the spectral density
of bath modes shown by Ford and O’Connell in [1] nor
for both discrete bath modes and continuous bath modes
with the generalized realistic damping models [2], since
the minimum value of the work to couple the free oscilla-
tor to a bath takes above and beyond this excess energy.
Therefore, the quantum second law for zero temperature
is inviolate.

In this paper, we would like to discuss the second law
in the quantum Brownian motion at an arbitrary tempera-
ture. We will obtain an analytic expression for the second-
law inequality which can explicitly be shown to hold for
the Drude model, which is the prototype for physically
realistic damping. It is known [19] that a finite frequency
cut-off reflects the physical fact that the bath cannot react
instantaneously to a change of the system oscillator, and
that in the absence of the cut-off, some observables such
as the variance of the system momentum diverge. There-
fore, the physically unrealistic cutoff-free damping models
considered in [2] will not extensively be considered here
(cf. Sect. 5). From the result of this work, the appearance
(or disappearance) of quantum effects versus thermal fluc-
tuation over the different temperatures will also be seen
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explicitly. Let us begin with a brief review on the basics of
the quantum Brownian motion. We will below adopt the
notations used in [20].

2 Basics of quantum Brownian motion

The quantum Brownian motion under consideration is de-
scribed by the model Hamiltonian

Ĥ = Ĥs + Ĥb−sb, (1)

where

Ĥs =
p̂2

2M
+
M

2
ω2

0 q̂
2 (2)
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j=1

⎧
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⎩
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j

2mj
+
mj
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j
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mj ω2
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⎬
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The Hamiltonian Ĥs−sb splits into the bath and the cou-
pling term,

Ĥb =
N∑

j=1

(
p̂2

j

2mj
+
mj

2
ω2

j x̂
2
j

)
(4)

Ĥsb = −q̂
N∑

j=1

cj x̂j + q̂2
N∑

j=1

c2j
2mj ω2

j

. (5)

From the hermiticity of Hamiltonian, the coupling con-
stants cj are real-valued. Without any loss of generality,
we assume that

ω1 ≤ ω2 ≤ · · · ≤ ωN−1 ≤ ωN . (6)

By means of the Heisenberg equation of motion, we can
derive the quantum Langevin equation

M ¨̂q + M

∫ t

0

ds γ(t− s) ˙̂q(s) + M ω2
0 q̂ = ξ̂(t), (7)

where we used p̂ = M ˙̂q, and the damping kernel and the
noise operator are respectively given by

γ(t) =
1
M

N∑

j=1

c2j
mj ω2

j

cos(ωj t) ; ξ̂(t) = −Mγ(t) q̂(0)

+
N∑

j=1

cj

{
x̂j(0) cos(ωj t) +

p̂j(0)
mj ωj

sin(ωj t)
}
. (8)

Here, 〈ξ̂(t)〉ρb′ = 0 and 〈ξ̂(t) ξ̂(t′)〉ρb′ = Mγ(t − t′)/β
for the initial bath state with the shifted canonical equi-
librium distribution, ρ̂b′ = e−βĤb−sb(0)/Z

(b′)
β [19] where

β = 1/kBT , and Z
(b′)
β is the normalization constant (i.e.,

the partition function). The Fourier-Laplace transform of
γ(t) is [20]

γ̃(ω) =
iω

M

N∑

j

c2j
mj ω2

j

1
ω2 − ω2

j

. (9)

Introducing the spectral density of bath modes as a char-
acteristic of the bath,

J(ω) = π
N∑

j=1

c2j
2mj ωj

δ(ω − ωj), (10)

we can also express the damping kernel as

γ(t) =
2
M

∫ ∞

0

dω

π

J(ω)
ω

cos(ω t). (11)

We now consider a response function [20], χ(t) =
i
�
× 〈[q̂(t), q̂]〉β, where the expectation value 〈· · ·〉β is

taken with respect to the equilibrium state, ρ̂β =
e−βĤ/Zβ with the partition function, Zβ = Tr e−βĤ . The
Fourier-Laplace transform of χ(t) is then the dynamic
susceptibility

χ̃(ω) =
1
M

1
ω2

0 − ω2 − iω γ̃(ω)
, (12)

which plays important roles later. It is known [12] that
the susceptibility χ̃(ω) can be rewritten as

χ̃(ω) = − 1
M

N∏

j=1

(ω2 − ω2
j )

N∏

k=0

(ω2 − ω̄2
k)

, (13)

where the normal-mode frequencies, ω̄k of the total system
Ĥ satisfy ω2

0 − ω̄2
k − i ω̄k γ̃(ω̄k) = 0. Without any loss of

generality, we here assume that

ω̄0 ≤ ω̄1 ≤ · · · ≤ ω̄N−1 ≤ ω̄N . (14)

It can then be found [14,2] that

ω̄0 ≤ ω1 ≤ ω̄1 ≤ · · · ≤ ωN−1 ≤ ω̄N−1 ≤ ωN ≤ ω̄N ,
(15)

and ω̄0 ≤ ω0 ≤ ω̄N .
The damping function γ̃(ω) in (9) can be rewritten as

γ̃(ω) =
i

M

∫ ∞

0

dω′

π

J(ω′)
ω′

(
1

ω′ + ω
− 1
ω′ − ω

)

(16)
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)
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(17)

which resulted from the Fourier-Laplace transform of (11).
Here, we used the well-known formula, 1/(x + i 0+) =
P (1/x) − iπδ(x) for x = ω′ − ω. Equation (17) is con-
venient for the case of a continuous distribution J(ω)
of bath modes; for the simple Ohmic case, J0(ω) =
Mγo ω with an ω-independent constant γo, we easily have
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γ0(t) = 2γo δ(t), and γ̃0(ω) = γo with a vanishing princi-
pal (or imaginary) part in (17), while for the Drude model
where Jd(ω) = M γo ω ω

2
d/(ω

2 + ω2
d) with a cut-off fre-

quency ωd, we have γd(t) = γo ωd e
−ωd t, and

γ̃d(ω) =
γo ω

2
d

ω2 + ω2
d

+ i
γo ωd ω

ω2 + ω2
d

=
γo ωd

ωd − iω
. (18)

Here, Jd(ω) behaves like J0(ω) for small frequencies (with
ωd → ∞).

The model Hamiltonian in (1) can also describe the
classical Brownian motion (see, e.g., [21]). In considering
the quantum second law below, therefore its classical coun-
terpart will be discussed briefly in comparison.

One might think of using instead of Ĥsb in (2) its ro-
tating wave approximation Ĥ(r)

sb = �
∑

j κj (â b̂†j + â† b̂j),
which has for ω0 = ωj for all j, energy-conserving terms

only. Here, â =
√
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√
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2�
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p̂j, respectively. In this case, though, we cannot

observe any excess energy of the coupled oscillator at zero
temperature since the system oscillator and all bath os-
cillators remain unchanged in their ground states, respec-
tively, with no entanglement (see also [22,23]); from the

Heisenberg equation, i� ˙̂
H

(r)
s = [Ĥs, Ĥ

(r)] = [Ĥs, Ĥ
(r)
sb ],

we can obtain
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which yield ˙̂
H

(r)
s |ψi〉 = ˙̂

H
(r)
j |ψi〉 = 0 for the initial state

|ψi〉 = |0〉|00 · · ·〉, respectively. For the full Hamiltonian Ĥ
in (1), on the other hand, we have, after a fairly lengthy
calculation,

˙̂
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j
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mjω2

j

, (20)

which clearly gives rise to ˙̂
Hs|ψi〉 �= 0.

3 Formulation of the quantum second law

From the fluctuation-dissipation theorem [19], we can eas-
ily have

1
2
〈q̂(t1)q̂(t2) + q̂(t2)q̂(t1)〉β =

�

π

∫ ∞

0
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(21)

which immediately yields
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and thus the energy of the coupled oscillator

Es(T ) := 〈Ĥs〉β =
M�

2π

∫ ∞

0

dω (ω2
0 + ω2) coth

(
β�ω

2

)

× Im{χ̃(ω + i 0+)}. (24)

In comparison, the internal energy of an uncoupled (or
free) oscillator is [3]

e(ω0, T ) = �ω0

(
1
2

+ 〈n̂〉β
)

=
�ω0

2
coth

β�ω0

2
, (25)

where the average quantum number 〈n̂〉β = 1/(eβ�ω0 −1).
Its classical counterpart appears as ecl(T ) = 1

β . With (25),
equation (24) can now be transformed to an expression

Es(T ) = Es(0) + ∆Es(T ), (26)

where

Es(0) = −M�

4πi

∮
dω

(
ω2
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)
χ̃(ω)

∆Es(T ) = −M�

2πi

∮
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(
ω2
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)
χ̃(ω) 〈n̂〉β . (27)

Here, the integration path is a loop around the positive
real axis in the complex ω-plane, consisting of the two
branches, (∞ + iε, iε) and (−iε, ∞ − iε) [24]. Therefore,
Es(T ) for the discrete bath modes can be exactly obtained
in closed form from the residues evaluated at all poles
{ω̄k} of χ̃(ω) in (13) on the positive real axis. Then, equa-
tion (26) reduces to

Es(T ) =
1
2

N∑

k=0

e(ω̄k, T )

{
1 +

(
ω0

ω̄k

)2
}
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j=1
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k − ω2

j )

N∏

k′=0
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(ω̄2
k − ω̄2

k′)

.

(28)
To study the quantum second law below, we need two
different Helmholtz free energies for the oscillator coupled
to a bath.

We first consider the Helmholtz free energy of the cou-
pled oscillator, Fs(T ) = Es(T ) − TSs [3] with its entropy
Ss = −∂Fs/∂T . This can easily be solved for Fs such
that [25]

Fs(T ) = T

(
−

∫ T

T0

Es(T ′)
T ′2 dT ′ + C

)
. (29)

By requiring that the entropy

Ss(β) = kB β Es(β) − kB

∫ β

β0

Es(β′) dβ′ − C (30)
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with β0 = 1/kBT0 vanish at zero temperature, we can
determine the constant C of integration; using (24) we
easily obtain

C/kB =
M�

2π

∫ ∞

0

dω (ω2
0 + ω2) Im{χ̃(ω + i 0+)}A(ω),

(31)
where

A(ω) =

(
β coth

β�ω

2
−

∫ β

β0

dβ′ coth
β′

�ω

2

)∣∣∣∣∣
β→∞

.

(32)
The asymptotic series, coth z = 1 + 2

∑∞
l=1 e

−2lz then al-
lows equation (32) to become

A(ω) =
∫ β0

dβ′ coth
β′

�ω

2
=

2
�ω

ln
(

sinh
β0�ω

2

)
, (33)

which clearly makes equations (29) and (30), respectively,
independent of T0 (or β0) and accordingly uniquely deter-
mined.

The other Helmholtz free energy Fs(T ) needed for the
second law is described as follows; the minimum work
required to couple a system oscillator at temperature
T to a bath at the same temperature is equivalent to
the Helmholtz free energy of the coupled total system
minus the free energy of the uncoupled bath [12]. This
minimum work can then be obtained as the free energy
Fs(T ) = − 1

β lnZβ , where the canonical partition func-

tion Zβ = Tr e−βĤ/Trb e
−βĤb . Here, Trb denotes the par-

tial trace for the bath alone (in the absence of a coupling
between system and bath, this would exactly correspond
to the partition function of the system only). By means of
the normal-mode frequencies ω̄k, we easily get

Zβ =

N∏

k=0

∑

nk=0

e−β�ω̄k(nk+ 1
2 )

N∏

j=1

∑

nj=0

e−β�ωj(nj+
1
2 )
, (34)

which yields

Fs(T ) =
∑

k=0

f(ω̄k, T ) −
∑

j=1

f(ωj, T ) (35)

with the free energy of an uncoupled oscillator

f(ω, T ) =
�ω

2
+

1
β

ln
(
1 − e−β�ω

)
. (36)

The classical counterpart of (36) is fcl(ω, T ) = ln β�ω
β with

� � 1. Equation (35) can then be rewritten as [12]

Fs(T ) =
1
π

∫ ∞

0

dω f(ω, T )Im
{
d

dω
ln χ̃(ω + i0+)

}
(37)

in terms of the susceptibility. We note here that for an
uncoupled oscillator, Im

{
d

dω ln χ̃(ω + i0+)
} → π δ(ω −

ω0) and thus Fs(T ) → f(ω0, T ). Similarly to (37), we
can also obtain the energy required to couple a system
oscillator to a bath,

Es(T ) =
∑

k=0

e(ω̄k, T ) −
∑

j=1

e(ωj , T )

=
1
π

∫ ∞

0

dω e(ω, T )Im
{
d

dω
ln χ̃(ω + i0+)

}
.(38)

From e(ω, T ) ≥ f(ω, T ) (the equal sign holds for T = 0
only) with the frequency relationship in (15), we can easily
get Es(T ) ≥ Fs(T ).

We now consider a cyclic process composed of the cou-
pling of a harmonic oscillator to a bath and then the
decoupling of the oscillator from the bath (the coupling
constants cj → 0). The free energy change on comple-
tion of the coupling process is Fs(T ) − f(ω0, T ), whereas
the maximum useful work obtainable from the oscillator
only in the decoupling process is the free energy difference
Fs(T )−f(ω0, T ) which cannot be greater than the energy
change Es(T )−e(ω0, T ). Here it is assumed obviously that
the extraction of energy from the bath is impossible. The
second law can then be expressed as an inequality

Fs(T ) − f(ω0, T ) ≥ Es(T ) − e(ω0, T ). (39)

In obtaining (39) we used the conceptional difference be-
tween Fs(T ) and Fs(T ) (“operational asymmetry”) [26].
For zero temperature, this inequality, obviously, reduces
to Fs(0) ≥ Es(0), the validity of which has been ex-
plicitly proven for the Drude damping model [1] and for
the discrete bath modes, by means of Es(0) in (28) and
Fs(0) in (35) with the frequency relationship (15), and
the generalized realistic damping models of continuous
bath modes [2]. For non-zero temperatures, on the other
hand, it is very non-trivial to investigate the validity of in-
equality (39) with Es(T ) and Fs(T ) for the discrete bath
modes. For the continuous bath modes, the evaluation of
Es(T ) and Fs(T ) clearly depends on the parameters of
the damping model considered. We will below discuss in-
equality (39) explicitly within the Drude model which is
the prototype for physically realistic damping.

4 Discussion of the second law within
the Drude model

It is convenient in the Drude model to adopt, in place of
(ω0, ωd, γo), the parameters (w0, Ω, γ) through the rela-
tions [1]

ω2
0 := w2

0
Ω

Ω + γ ;ωd := Ω + γ

γo := γ
Ω (Ω + γ)+w2

0
(Ω + γ)2 . (40)

Substituting equation (18) with (40) into (12), we obtain
the susceptibility

χ̃d(ω) = − 1
M

ω + i (Ω + z1 + z2)
(ω + iΩ)(ω + iz1)(ω + iz2)

, (41)
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where z1 = γ/2 + iw1 and z2 = γ/2 − iw1 with w1 =√
w2

0 − (γ/2)2. First, we consider the overdamped case
(γ/2 > w0), where z1, z2 > 0. We then have

Im χ̃d(ω) = − 1
M

3∑

l=1

λ
(l)
d

ω

ω2 + ωl
2
, (42)

where ω1 = Ω, ω2 = z1, ω3 = z2, and the coefficients

λ
(1)
d =

z1 + z2
(Ω − z1)(z2 − Ω)

; λ(2)
d =

Ω + z2
(z1 − Ω)(z2 − z1)

λ
(3)
d =

Ω + z1
(z2 − Ω)(z1 − z2)

. (43)

Here, we note that

3∑

l=1

λ
(l)
d = 0;

3∑

l=1

λ
(l)
d ωl

2 = 0. (44)

To obtain an explicit expression for the energy E(d)
s (T ) of

the coupled oscillator, we first consider the integral in (21);
by performing a contour integration with the aid of (42)
and the identity

coth
(
β�ω

2

)
=

2
β�ω

(
1 + 2

∞∑

n=1

ω2

ν2
n + ω2

)
, (45)

where νn = 2πn/β�, we can have

1
2
〈q̂(0) q̂(t) + q̂(t) q̂(0)〉(d)

β =

− 1
βM

3∑
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λ
(l)
d

{
e−ωlt

ωl
+ 2

∞∑

n=1

νn e
−νnt − ωl e

−ωlt

ν2
n − ωl

2

}
.

(46)

With � → 0, this reduces to its classical counterpart,

cl〈q(0) q(t)〉(d)
β = − 1

βM

∑
l λ

(l)
d

e
−ωlt

ωl
. From (46) and the

relation [20]

〈 ˙̂q(0) ˙̂q(t) + ˙̂q(t) ˙̂q(0)〉β = − d2

dt2
〈q̂(0)q̂(t) + q̂(t)q̂(0)〉β (47)

it can eventually be found that

E(d)
s (T ) =

1
β
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λ
(l)
d

×
{
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2

2ωl
−
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n + νnωl + ωl

2
)

νn + ωl

}
.

(48)

With � → 0, its classical counterpart easily appears as

clE
(d)
s (T ) = 1

2β

∑
l λ

(l)
d

ωl
2−ω2

0
ωl

= 1
β = ecl(ω0, T ). We can

also express (46) and (47) at t = 0, respectively, in terms
of the Digamma function [27]

ψ(y) =
d lnΓ (y)

dy
= −ce +

∞∑

n=1

1
n

−
∞∑

n=0

1
n+ y

(49)

with the Euler constant ce as

〈q̂2〉(d)
β =

1
M
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l=1

λ
(l)
d

{
1
βωl

+
�

π
ψ

(
β�ωl

2π
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〈 ˙̂q2〉(d)
β = − 1

M
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l=1

λ
(l)
d ωl

2

{
1
βωl

+
�

π
ψ

(
β�ωl

2π

)}
.(51)

Here, we used (44). Equation (48) can thus be rewritten as

E(d)
s (T ) =

1
2

3∑

l=1

λ
(l)
d (ω2

0 − ωl
2)

{
1
βωl

+
�

π
ψ

(
β�ωl

2π
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(52)
With the aid of the asymptotic expression, ψ(y) = ln y −
1
2y −∑∞

n=1
B2n

2n y2n with the Bernoulli number Bn [27], the

zero-temperature value E
(d)
s (0), clearly, reduces to (66)

derived in [2] (see Appendix).
Let us now consider the free energy F (d)

s (T ). By sub-
stituting (41) into (37) with the identity, ln(1 + y) =
−∑∞

n=1 (−y)n/n, we can easily obtain

F (d)
s (T ) = F (d)

s (0) +
1
πβ

∞∑

n=1

1
n
∆n(β), (53)

where

F (d)
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Ω

)
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Ω
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with w̄1 =
√

(γ/2)2 − w2
0, as was derived in [2], and

∆n(β) =
3∑
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τ
(µ)
d

∫ ∞

0

dy
e−nβ�ωµ y

y2 + 1
(55)

=
3∑

µ=0

τ
(µ)
d

{
sin(nβ�ωµ)Ci(nβ�ωµ)

− cos(nβ�ωµ)si(nβ�ωµ)
}

(56)

with τ
(0)
d = 1, τ (1)

d = τ
(2)
d = τ

(3)
d = −1, and ω0 = ωd (see

also Appendix). By the substituting the classical quantity
fcl(ω, T ) into (37) with

∫ x

0
dy/(y2 + 1) = arctanx and∫∞

0 dy ln y/(y2 + 1) = 0 [28], we can also obtain the clas-
sical counterpart clF (d)

s (T ) = − 1
2β ln ωd

Ω + fcl(w0, T ) =
fcl(ω0, T ).

For the underdamped case (γ/2 ≤ w0), equations (52)
and (53) can be found to hold as well, respectively, being
expressed in terms of the functions with complex-valued
arguments. By showing the validity of inequality (39) for
underdamped and overdamped cases,

Kd(T ) := F (d)
s (T ) − f(ω0, T )− E(d)

s (T ) + e(ω0, T ) ≥ 0
(57)
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Fig. 1. y = Kd(T )/�w0 versus temperature T ; from bottom
to top: (Ω = 1 and γ = 3/2 underdamped), (Ω = 1 and
γ = 4 overdamped), (Ω = 5 and γ = 3/2 underdamped), and
(Ω = 5 and γ = 4 overdamped); here, � = kB = w0 = 1;
in the high temperature limit, we have the classical behavior,
y → 0+.

as in Figure 1, we see that there is no violation of the
quantum second law; in fact, Kd(T ) vanishes asymptoti-
cally with the increase of T .

Comments deserve here. In the classical treatment
both sides of inequality (39) vanish, namely, clKd(T ) = 0,
which clearly means that no work is required to couple a
linear system to a bath at the same temperature, and no
energy change in the system is obtained during the decou-
pling (and the coupling). In the quantum treatment, on
the other hand, E(d)

s (T ) and F (d)
s (T ) depend on the damp-

ing parameters, respectively. Therefore, while both sides
of (39) become vanishing in the high temperature limit
(equivalently, � → 0), they actually do not vanish espe-
cially in the low temperature regime. This non-vanishing
behavior stems from the system-bath entanglement in-
duced by the finite coupling strength between them, which
leads to the deviation from ρ̂

(s)
β = e−βĤs/Z

(s)
β for the

reduced density matrix ρ̂
(d)
s (T ) being, clearly, damping-

parameter dependent.
In fact, we have Kd(T ) > 0 especially in the low tem-

perature regime (see Fig. 1). This strict irreversibility over
a single cycle composed of the coupling and decoupling
process appears from the fact that the system-bath en-
tanglement induces the entanglement between any pair
of infinitely many bath oscillators (“entanglement swap-
ping” [29]), which cannot completely removed over the
system-bath decoupling process. Therefore, we essentially
cannot recover the original state of the bath, ρ̂(b)

β and thus

that of the system, ρ̂(s)
β . As a result, F (d)

s (T ) − f(ω0, T ),
being the minimum work required for the entangling in
the coupling process, is greater than the energy change
E

(d)
s (T )− e(ω0, T ), which can necessarily not be less than

the free energy change, F (d)
s (T )−f(ω0, T ) being the max-

imum useful work obtainable from the system only in the

decoupling process. With the increase of T , however, the
strict irreversibility shrinks (Kd(T ) → 0+) since the ther-
mal effect dominates the quantum effect. In the classical
case, on the other hand, this operational asymmetry, intro-
duced in the last paragraph of Section 3, disappears at an
arbitrary temperature, namely clF (d)

s (T ) = clF
(d)
s (T ) =

fcl(ω0, T ).

5 Comparison with the Ohmic model

Let us briefly consider the Ohmic model (as a cutoff-free
damping model) for an arbitrary temperature to compare
with the Drude model considered in Section 4. For zero
temperature it is known [2] that Ko(0) = F (o)

s (0)−E(o)
s (0)

vanishes, where

F (o)
s (0) = E(o)

s (0) =
�γo

2π

∫ ∞

0

dω
ω

(
ω2 + ω2

0

)

(ω2 − ω2
0)

2 + (γ0ω)2

(58)
diverges logarithmically, while its Drude-model counter-
part Kd(0) → Eg γ/πw0 in the limit ωd → ∞ (equiva-
lently, Ω → ∞) where Eg is the ground state energy of a
free oscillator.

For the overdamped case (γo/2 > ω0), the susceptibil-
ity in (12) appears as

χ̃o(ω) = − 1
M

1
(ω + iω1) (ω + iω2)

, (59)

where ω1 = γo/2 − w̄ > 0 and ω2 = γo/2 + w̄ > 0 with
w̄ =

√
(γo/2)2 − ω2

0 . Substituting (59) into (21), we can
obtain

1
2
〈q̂(0) q̂(t) + q̂(t) q̂(0)〉(o)

β =

− 1
2βw̄M

2∑

j=1

λ(j)
o

{
e−ωjt

ωj
+ 2

∞∑

n=1

νn e
−νnt − ωj e

−ωjt

ν2
n − ω2

j

}

(60)

with λ
(1)
o = −1 and λ

(2)
o = 1 [30], from which, similarly

to (50),

〈q̂2〉(o)
β =

1
2w̄M

2∑

j=1

λ(j)
o

{
1

β ωj
+

�

π
ψ

(
β�ωj

2π

)}
. (61)

Substituting (60) into (47), we can also get

〈 ˙̂q2〉(o)
β = − 1

2w̄M

2∑

j=1

λ(j)
o ω2

j

(
1
βωj

+
�

π

{
ψ

(
β�ωj

2π

)

+ ce −
∞∑

n=1

1
n

})
, (62)

which diverges logarithmically for an arbitrary temper-
ature (note that limn→∞(

∑n
k=1

1
k − lnn) = ce); com-

pare this with 〈 ˙̂q2〉(d)
β in (51) being convergent. From (61)
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and (62), the energy of the coupled oscillator is

E(o)
s (T ) =

1
4w̄

2∑

j=1

λ(j)
o

{
(ω2

0 − ω2
j )

{
1
βωj

+
�

π
ψ

(
β�ωj

2π

)}

−�ω2
j

π

(
ce −

∞∑

n=1

1
n

)}
, (63)

which clearly diverges. With � → 0, its classical counter-
part, however, reduces to clE

(o)
s (T ) = ecl(ω0, T ) (it can

also be found [9] that E(o)
s (T ) is identical to the energy

E(o)
s (T ) obtainable from (38)). Further, similarly to (53),

we can easily obtain

F (o)
s (T ) = F (o)

s (0) + ∆F (o)
s (T ), (64)

where

∆F (o)
s (T ) = − 1

πβ

∞∑

n=1

1
n

2∑

j=1

{ sin(nβ�ωj)Ci(n�βωj)

− cos(nβ�ωj) si(nβ�ωj)}. (65)

The free energy F (o)
s (T ) also diverges. With � → 0, we

get clF (o)
s (T ) = fcl(ω0, T ). Equations (63) and (64) can

be found to hold, respectively, for the underdamped case
as well.

For comparison with the Drude model, we take the
limit Ω (or ωd) → ∞ in (4) so that λ(1)

d → 0, λ(2)
d →

1/(z1 − z2), and λ
(3)
d → −λ(2)

d . Then, it can easily be
shown that E(d)

s (T ) � E
(o)
s (T ) and F (d)

s (T ) � F (o)
s (T );

the second term on the right hand side of (53) reduces
to ∆F (o)

s (T ) in (64), however, the first term F (d)
s (0) �

F (o)
s (0) as discussed in [2]. As a result, the second-law

inequality (39) for the Drude model with ωd → ∞ is not
equivalent to that for the Ohmic model. Whereas the clas-
sical counterpart clKo(T ) = 0, both sides of (39) come to
diverge differently so that it is non-trivial to explicitly
evaluate Ko(T ) for this unrealistic damping model.

6 Conclusions

In summary, we have studied the second law in the scheme
of quantum Brownian motion at an arbitrary temperature.
It is clearly a generalization of the previous works for zero
temperature by Ford and O’Connell [1] and by the authors
of the present paper [2]. It has been shown for the phys-
ically realistic damping model that the work needed to
couple a system oscillator to a bath at the same tempera-
ture cannot be less than the work obtainable from the os-
cillator only when it is extracted from the bath; especially
in the low temperature regime the apparent irreversibil-
ity, Kd(T ) > 0, stemming from the system-bath entangle-
ment was found, which is different from the behavior of its
classical counterpart, clKd(T ) = 0. Therefore, the quan-
tum second law holds for an arbitrary temperature. The

question about the validity of the quantum second law for
a broader class of quantum systems than the quantum
Brownian motion considered here, especially non-linear
systems coupled to a bath, clearly remains open.

One of us (I.K.) is grateful to Professor E. Merzbacher (UNC-
Chapel Hill), who kindly encouraged him to pay attention to
this subject.

Appendix A: Mathematical supplements

It has been shown in [2] that for the overdamped case
(w0 ≤ γ/2),

E(d)
s (0) =

�

2π
{A(w0, Ω, γ) + B(w0, Ω, γ)} , (66)

where

A(w0, Ω, γ) =

(w2
0 +Ω2)(Ωγ2/4 −Ωw2

0 − w2
0γ/2) +Ω2γ3/4

w̄1(Ω + γ)(w2
0 −Ωγ +Ω2)

ln
(
γ/2 − w̄1

γ/2 + w̄1

)
(67)

with w̄1 =
√

(γ/2)2 − w2
0, and

B(w0, Ω, γ) =
Ω γ (Ω2 + Ω γ − w2

0)
(Ω + γ) (w2

0 − Ω γ + Ω2)
ln(Ω/w0).

(68)
In derivation of equation (56) from (55), we used [28]
∫ ∞

0

dy
e−ay

y2 + b2
=

1
b
{sin(ab)Ci(ab) − cos(ab)si(ab)},

(69)
where a, b > 0; the sine integral si(y) = − ∫∞

y
dz sin(z)

z =

−π
2 + Si(y) with Si(y) =

∫ y

0
dz sin(z)

z , and the cosine in-
tegral Ci(y) = − ∫∞

y dz cos(z)
z = ce + ln y +

∫ y

0 dz
cos(z)−1

z

with the Euler constant ce = 0.5772156649 · · · .
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